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Abstract Differential properties of Klein-Gordon and electromagnetic fields on the space-
time of a straight cosmic string are studied with the help of methods of the differential space
theory. It is shown that these fields are smooth in the interior of the cosmic string space-
time and that they loose this property at the singular boundary except for the cosmic string
space-times with the following deficit angles: � = 2π(1 − 1/n), n = 1,2, . . . .

A connection between smoothness of fields at the conical singularity and the scalar and
electromagnetic conical bremsstrahlung is discussed. It is also argued that the smoothness
assumption of fields at the singularity is equivalent to the Aliev and Gal’tsov “quantization”
condition leading to the above mentioned discrete spectrum of the deficit angle.
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1 Introduction

The differential structure C of a differential space (d-space for short) (M, C) is a set of
real functions on M which is closed with respect to localization and closed with respect
to superpositions with smooth functions on R

n, n ∈ N. Every function from C is smooth
by definition. These functions are at the base of main notions and structures defined on
(M, C). For instance, the smooth functions determine topology, tangent vectors, smooth
vector fields, dimension of tangent spaces, etc. Details can be found in [9].

When one tries to describe given space-time by means of notions from the d-spaces
theory the question arises. What is the meaning of smoothness and d-structure in physics of
space-time? In [9, 10, 17] smooth functions from C are interpreted as “the system of scalar
fields which actually contain all information necessary to define the manifold structure”.
Then the first axiom of the d-space definition, postulating the closure of C with respect to
localization, guarantees the consistency of local physics with global physics. The second
axiom, postulating the closure of C with respect to superposition with smooth functions
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on R
n, provides a mechanism for construction “new” smooth quantities from “old” ones.

The additional, third axiom, postulating a local diffeomorphism to R
n, which changes a

given d-space into a smooth manifold, can be interpreted as a “non-metric version of the
equivalence principle” [10]. In the present paper, we test how this interpretation works in
practice.

The assumptions of the present paper and the main anticipated results are the following:

1) It is supposed that space-time under investigation is a flat space-time with the conical
singularity usually called the space-time of straight cosmic string.

2) Additionally, it is assumed that a scalar Klein-Gordon or electromagnetic fields are de-
fined on the background of this space-time, and perturbations of the metric due to these
fields are not taken into account.

3) The detailed analysis of differential properties of the elementary solutions for K-G scalar
and electromagnetic fields (Sects. 3, 4 and 5) leads to the following results: a) The el-
ementary solutions are smooth functions (in the sense of Sikorski) on the space-time
manifold treated as a d-space. b) The above fields on this d-space with a conic singular-
ity are smooth only for the deficit angle � = 2π(1 − 1/n), n = 1,2, . . . .

In Sect. 6 the co-called scalar and electromagnetic conical bremsstrahlung effect [2] is
discussed. Section 7 contains summary of results and an argumentation that the assump-
tion of smoothness of physical fields at the singularity (the asymptotic smoothness) can be
treated as a geometric version of the Aliev and Gal’tsov condition for vanishing of the con-
ical bremsstrahlung effect. The assumption leads to the following discrete spectrum of the
deficit of angle: � = 2π(1 − 1/n),n = 1,2, . . . . In Appendix A one can find elementary
introduction to the theory of d-spaces, and in Appendix B details concerning the d-space of
a cosmic string.

2 Differential Space of a Cosmic String with Singularity

Space-time described with the help of the metric

g = −dt2 + k−2dρ2 + ρ2dφ2 + dz2 (1)

where k = (1 − �/2π), t, z ∈ R, ρ ∈ (0,∞) and φ ∈ 〈0,2π), is an example of space-time
with quasiregular singularity of the conic type. The parameter � ∈ 〈0,2π) is called deficit
angle. The three-dimensional version of the above metric is interpreted as the Schwarzchild
solution in the framework of 3-D gravity [28], whereas the four-dimensional metric is inter-
preted as an exterior gravitational field of a straight cosmic string in 4-D gravity [29].

The space-time of a cosmic string as a pseudoriemannian manifold (M,g) is isometric to
(C◦ ×R

2, ι∗η(5)), where C◦ is a two-dimensional cone without the vertex; ι : C◦ ×R
2 → R

5

is an embedding and η(5) is the five-dimensional Minkowski metric. The space-time of a
cosmic string as a differential space is diffeomorphic to C◦ × R

2, where the latter is treated
as a differential subspace of the d-space (R5, E5), where E5 = C∞(R5). In other words,
(M,g) as a d-space (M, M) is diffeomorphic to (C◦ × R

2, (E5)C◦×R2), where (E5)C◦×R2

is the induced d-structure [8, 9] and the symbol (·)C◦×R2 denotes the operation of taking
closure with respect to localization (Definition A.2).

The singular space-time of a cosmic string can be defined in various ways. The most
popular method depends on attaching the vertex of the cone to C◦. Then C• × R

2 rep-
resents the space-time of the cosmic string with singularity, where C• denotes the cone
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with the vertex. Evidently, C• × R
2 is not a sub-manifold of R

5 but it is still a d-subspace:
(C• × R

2, (E5)C•×R2).
However, the main objects of our study in the present paper are two auxiliary d-spaces

(P ◦, P ◦) and (P •, P •) (for details see Appendix B or [8]) which are diffeomorphic to
the d-space of cosmic string without singularity and to the d-space of cosmic string with
singularity, respectively. The auxiliary d-spaces are more convenient for investigations than
the original ones (C◦ × R

2, (E5)C◦×R2) and (C• × R
2, (E5)C•×R2). For example, the above

described singularity attaching process is simply the procedure of taking limits of a few
functions from P ◦ [8]. The resulting d-space (P •, P •) is, in a sense, a limit (or an asymp-
totic) state of the background d-space (P ◦, P ◦).

3 Differential Properties of a Scalar Field in the Conical Space-Time of a Cosmic
String

As well known, normal modes of the Klein-Gordon scalar field for the cosmic string space-
time in (t, ρ,φ, z) coordinates have the following form

�̃◦
ε,l,β : P̃ ◦ → C,

�̃◦
ε,l,β (t, ρ,φ, z) = Nε,l,βe−iεt eiβzeilφρ |l|/kF (l, k;ρ)

(2)

where ε,β ∈ R, l ∈ Z, Nε,l,β is the normalization constant, k ∈ (0,1) is defined in formula
(1) and P̃ ◦ is given in Appendix B. F(l, k;ρ) is an analytical function of ρ. Its detailed form
is not important for the present study.

Additionally, there is an another set of normal modes usually excluded from physical
investigations because of a singular behaviour of functions as their arguments tend to the
singularity (ρ → 0) [24]. Sometimes however, such normal modes can be of physical rele-
vance [12] but in the present paper this divergent normal modes are not taken into account.

The space-time of the cosmic string is represented by the d-space (P ◦, P ◦). Therefore,
in this case normal modes of the scalar field are given by:

�◦
ε,l,β :P ◦ → C,

�◦
ε,l,β ([p]) := �̃◦

ε,l,β (p),
(3)

where p = (t, ρ,φ, z), [p] ∈ P ◦ = P̃ ◦/ρ
H

(Appendix B).

Definition 3.1 Let (M, C) be a d-space. A complex function f :M → C is said to be smooth
if Ref , Imf ∈ C .

Proposition 3.1 The normal modes �◦
ε,l,β are smooth functions on (P ◦, P ◦) for every ε,β ∈

R, l ∈ Z and k ∈ (0,1).

Proof Following Corollary A.1 it is enough to prove the smoothness of �̃◦
ε,l,β on (P̃ ◦, P̃ ◦)

(Appendix B). It is easy to check that functions �̃◦
ε,l,β are smooth functions since they are

superpositions of generators α̃0, α̃1, . . . , α̃4 (see Appendix B) with smooth functions from
C∞(Rm), m = 1,2, . . . and ρ |l|/k is smooth for ρ > 0. �

According to Proposition 3.1 the normal modes (3) are smooth functions on (P ◦, P ◦).
They belong to P ◦ and therefore they carry no new information from the point of view of
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the “pre-geometry” determined by P ◦. One can say that the space-time of a cosmic string is
“prepared” for imposing a scalar field on its background d-space. In other words, space-time
is from the very beginning differentially configured in such a manner that the imposition of a
scalar field is done by the indication which functions among already existing ones in P ◦ are
normal modes. This fact is a confirmation of the correctness of the assumption that the scalar
field on a given space-time does not cause any changes of properties of the gravitational field.

(P ◦, P ◦) represents the background d-space of a cosmic string if (P •, P •) is its asymp-
totic state. This statement mirrors the fact that the gravitational field described by means
of metric (1) is a space-time of a cosmic string only if a singular boundary of a conic type
is present. Therefore, in the process of calculating normal modes, its asymptotic properties
at the singularity have to be taken into account. This kind of analysis excludes divergent
modes from further field-theory considerations [24]. The question arises: What are differen-
tial properties of the normal modes at the singularity? The following argumentation clarifies
the situation.

One can easily check that normal modes naturally prolonged to singularity,

�̃•
ε,l,β (p) := lim

q→p
�̃◦

ε,l,β (q), q ∈ P̃ ◦,p ∈ P̃ •, (4)

are constant functions on every equivalence class [p] for p ∈ P̃ • (see Appendix A, for-
mula (7) and Appendix B). Therefore, they can be used for construction prolonged modes
�•

ε,l,β defined on (P •, P •):

�•
ε,l,β ([p]) := �̃•

ε,l,β (p), [p] ∈ P •,p ∈ P̃ •. (5)

The prolongation is natural from the physical point of view.

Proposition 3.2 For every ε,β ∈ R and l ∈ Z, �•
ε,l,β are

a) smooth functions on (P •, P •) for k ∈ (0,1) such that |l|/k ∈ N,
b) non-smooth functions on (P •, P •) for k ∈ (0,1) such that |l|/k �∈ N.

Proof It is enough to check smoothness for �̃•
ε,l,β . Functions e−iεt , eiβz, eilφ, F (l, k;ρ) are

smooth owing to the same arguments as in Proposition 3.1. The function ρ |l|/k = (α4(ρ))|l|/k

is a smooth function for ρ > 0. At ρ = 0 the superposition is smooth the only in the case
|l|/k ∈ N. �

In general, �•
ε,l,β are not smooth functions on (P •, P •)except for cases when the metric

parameter k ∈ (0,1) satisfies the condition: ∀ l ∈ Z : |l|/k ∈ N. This means that k = 1/n,
where n = 2,3, . . . . One can also include the case of the Minkowski space (k = 1). In other
words, the prolonged normal modes are smooth functions only for the space-time of a cos-
mic string with the deficit angle � = 2π(1 − 1/n), where n = 1,2, . . . .

4 Global Properties of the Space-Time of a Cosmic String with a Scalar Field

Let a real-valued function β• : P • → R be defined by the formula

β•([p]) := β̃•(p) := ρ1/k, (6)
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where k ∈ (0,1〉. One can define an another d-structure on P •:

P̂ • = Gen(α•
0, α

•
1, . . . , α

•
4 , β

•).

Proposition 4.1 For k �= 1/n, n = 1,2,3, . . . , the prolonged normal modes �•
ε,l,β are

smooth functions on (P •, P̂ •) for every ε,β ∈ R and l ∈ Z.

Proof The factor ρ |l|/k in formula (2), after prolongation to the singular boundary, is a
smooth composition of β•. �

Corollary 4.1 If k = 1/n, n = 1,2,3, . . . then (P •, P̂ •) = (P •, P •).

Proof β• ∈ P • for k = 1/n. �

Proposition 4.2 If k �= 1/n, n = 1,2,3, . . . then the set {α•
0, α

•
1, . . . , α

•
4 , β

•} is differen-
tially independent at boundary points p ∈ S = P • − P ◦. β• and α•

4 differentially depend on
{α•

0, α
•
1, α

•
2, α

•
3} elsewhere on P •.

Proof The conclusion is a straightforward consequence of Definitions A.6 and A.7. �

Corollary 4.2 If k �= 1/n then

a) dim Tp(P •, P̂ •) = 6 for p ∈ S,
b) dim Tp(P •, P̂ •) = 4 for p �∈ S,

where S = P • − P ◦ denotes the set of all boundary points.

Proof The conclusion is a consequence of Lemma A.1 and Proposition 4.2 �

In general, �•
ε,l,β are non-smooth functions on (P •, P •)because of the ρ |l|/k factor in

formula (2). Other factors are smooth functions. In order to keep smoothness of �•
ε,l,β on

P • one has to modify the d-structure P • by adding “necessary” functions. In our case, the
most physically reasonable method is to supplement the set of generators {α•

0, α
•
1, . . . , α

•
4} of

the d-structure P • (Appendix B) with the function β•. Then P̂ • = Gen(α•
0, α

•
1, . . . , α

•
4 , β

•)
is the smallest d-structure containing α•

0, α
•
1, . . . , α

•
4 and β• as smooth functions [8, 9].

Thus, in order to keep smoothness of �•
ε,l,β , the prolonged d-space of the cosmic string

space-time with a scalar field ought to be represented by (P •, P̂ •) rather than by (P •, P •). In
the case k = 1/n, the function β• is smooth on (P •, P •) and according to Corollary 4.1 the
prolonged background d-spaces both for the cosmic string space-time and the cosmic string
space-time with a scalar field are the same; (P •, P̂ •) = (P •, P •). In the case k �= 1/n, β•

is not a smooth function on (P •, P •). This means that (P •, P̂ •) and (P •, P •) are different
and are not diffeomorphic d-spaces. For example (P •, P̂ •) has differential dimension 6 at
the singular points (Corollary 4.2) whereas the (P •, P •)—5 (see [8]). A straightforward
consequence of this fact is that (P •, P̂ •) cannot be embedded in R

5 like (P •, P •), but can
be embedded in R

6.
In order to formulate the final conclusions of the above discussion let us define the fol-

lowing.



2916 Int J Theor Phys (2008) 47: 2911–2923

Definition 4.1 A physical scalar (vector, tensor) field � is said to be smooth on a back-
ground d-space (M, C) iff scalar (vector, tensor) elementary solutions of the corresponding
field equation are smooth functions (vector, tensor fields) on (M, C).

Definition 4.2 A physical scalar (vector, tensor) field � is said to be asymptotically smooth
on (M◦, C◦,M•, C•, g) if

a) � is a smooth physical field on (M◦, C◦),
b) � is a smooth physical field on (M•, C•),

where the symbol (M◦, C◦,M•, C•, g) denotes a pseudoriemannian manifold (M◦, g)

equipped with a metric g which, as a d-space (M◦, C◦), has the prolongation (M•, C•).

The prolonged background d-space of a cosmic string is represented strictly by (P •, P •)
(see Appendix B) so (P •, P̂ •) cannot be interpreted in such manner. Thus, including
Minkowski space-time (k = 1), one can formulate the following theorem.

Theorem 4.1 The conical space-time of a cosmic string (P ◦, P ◦, P •, P •, g) can be a back-
ground of an asymptotically smooth Klein-Gordon scalar field only in the case of the fol-
lowing discrete spectrum of the deficit angle:

� = 2π(1 − 1/n),

where n = 1,2, . . . , and g denotes metric (1).

I would like to emphasize that the discrete spectrum of the deficit angle is not visible on
the “metric” level. The effect appears when the differential properties of a cosmic string are
taken into account.

5 Electromagnetic Field in a Conical Space-Time

Let Ã◦
σ : P̃ ◦ → C be an electromagnetic field. Ã◦

σ , in the Lorentzian gauge ∇μÃ◦
μ = 0,

obey the Maxwell equations ∇μ∇μÃ◦
σ = 0. Their elementary solutions have the following

form

Ã◦
a(ε,β, l) = e−iεt eiβzeilφρ |l|/kF a

ε,β,l,k(ρ),

Ã◦
1(ε,β, l) = e−iεt eiβzeilφ

(
ρ |1+l/k|F 1

ε,β,l,k(ρ) + ρ |1−l/k|F 2
ε,β,l,k(ρ)

)
,

Ã◦
2(ε,β, l) = kρ

2i
e−iεt eiβzeilφ

(
ρ |1+l/k|F 1

ε,β,l,k(ρ) − ρ |1−l/k|F 2
ε,β,l,k(ρ)

)
,

where ε,β ∈ R, l ∈ Z and a = 0,3. Detailed forms of the analytical functions Fb
ε,β,l,k , b =

0,1,2,3 can be found in [2] but they are not relevant for further discussion.

Definition 5.1 Let B1 and B2 be two sets of real functions on M and Vm: C → Bm, Bm =
Vm(C), m = 1,2, be vector fields on (M, C). The mapping V := V1 + iV2 is said to be a
complex vector field on (M, C). V is a smooth complex vector field on (M, C) if Bm ⊂ C for
m = 1,2.
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Let us define complex vector fields Ã◦
ε,β,l and Ã•

ε,β,l on (P̃ ◦, P̃ ◦) and (P̃ •, P̃ •), respec-
tively, by the following formulae

Ã◦
ε,β,l := Ã◦μ

∂μ,

Ã•
ε,β,l(γ

•)(p) := lim
q→p

Ã◦
ε,β,l(γ

◦)(q),

where γ ◦ := γ • |
P̃ ◦ , γ • ∈ P̃ •, q ∈ P̃ ◦ and p ∈ P̃ •.

Then, electromagnetic vector fields A◦
ε,β,l and A•

ε,β,l on (P ◦, P ◦) and (P •, P •), respec-
tively, can be defined in the following way

A◦
ε,β,l := π#

ρ
H

(Ã◦
ε,β,l),

A•
ε,β,l := π#

ρ
H

(Ã•
ε,β,l),

where the map π#
ρ
H

is given in Appendix A.

Proposition 5.1 For every ε,β ∈ R and l ∈ Z

1. A◦
ε,β,l are smooth complex vector fields on (P ◦, P ◦),

2. A•
ε,β,l are

a) smooth complex vector fields on (P •, P •), for k ∈ (0,1), such that |l|/k ∈ N,
b) not smooth complex vector fields on (P •, P •), for k ∈ (0,1), such that |l|/k �∈ N.

Proof Following Corollary A.2, A◦
ε,β,l and A•

ε,β,l are smooth vector fields on (P ◦, P ◦)
and (P •, P •), respectively, iff both Ã◦

ε,β,l on (P̃ ◦, P̃ ◦) and Ã•
ε,β,l on (P̃ •, P̃ •) are

smooth. Straightforward calculations lead to the conclusion that Re Ã◦
ε,β,l(P̃ ◦) ⊂ P̃ ◦,

Im Ã◦
ε,β,l(P̃ ◦) ⊂ P̃ ◦, for every k ∈ (0,1), and Re Ã•

ε,β,l(P̃ •) ⊂ P̃ •, Im Ã•
ε,β,l(P̃ •) ⊂ P̃ •

only for k ∈ (0,1) such that |l|/k ∈ N for every l ∈ Z. �

Theorem 5.1 The conical space-time of a cosmic string (P ◦, P ◦, P •, P •, g) can be a back-
ground of an asymptotically smooth electromagnetic field only in the case of the following
discrete spectrum of the deficit angle:

� = 2π(1 − 1/n),

where n = 1,2, . . . , and g denotes metric (1).

Proof The argumentation is similar to that of in the scalar field case. Following
Proposition 5.1 and Definition 4.2, A•

ε,β,l are not smooth complex vector fields
on (P •, P •) for k �= 1/n, n = 1,2, . . . and therefore they are not asymptotically smooth on
(P ◦, P ◦, P •, P •, g). For k = 1/n, n = 1,2, . . . both A◦

ε,β,l and A•
ε,β,l are smooth complex

vector fields on (P ◦, P ◦) and (P •, P •) respectively. �

6 Radiative Aharonov-Bohm Effect and Differential Structures

The space-time of a cosmic string is locally flat and consequently there are no local gravita-
tional forces acting on massive bodies or light rays. In spite of this, there are a few interesting
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effects such as: the lensing effect [6, 30], production of an electromagnetic radiation by a
freely moving charge [20], radiative “conical bremsstrahlung” [1, 2], which are examples
of the gravitational Aharonov-Bohm effects [5, 30]. From the point of view of the present
paper the most interesting are the so-called radiative A-B effects appearing when a scalar or
charged particle is moving in the space-time of a cosmic string [2].

A scalar (electric) charge freely moving in the space-time of a cosmic string can be re-
garded as a source of a scalar (electromagnetic) field with non-vanishing energy-momentum
tensor. During the motion a variation of the total energy of the field appears. The variation E
is interpreted by Aliev and Gal’tsov as the total work done by a radiation friction force upon
the source. The effect is called scalar (electromagnetic) conical bremsstrahlung [2].

In the scalar and electromagnetic cases, the distribution of variation of the total energy is
of the form

dE
dω

= sin2(π/k)

πk
Fsc(em)(k, q,ω, d, v,U 0),

where Fsc(em) is a function of k,ω and constants of motion. Its detailed form can be found
in the original paper by Aliev and Gal’tsov [2]. However, for our purposes only the depen-
dence on k is important. In both scalar and electromagnetic cases, E vanishes for k = 1/n

(� = 2π(1 − 1/n)), n = 1,2, . . . .
Thus, there is an apparent connection between the smoothness of the elementary solu-

tions on the d-space of a cosmic string with singularity (P •, P •) and the effect of vanishing
of E . The nature of this connection has a relatively simple mathematical origin. Namely, the
variation of the total energy E is calculated by means of so-called radiative Green function
which is constructed with the help of the elementary solutions �̃•

ε,l,β in the scalar case and

with the help of Ã•
μ(ε,β, l) in the electromagnetic case. As shown in [1, 2, 20], E constructed

in such a manner vanishes for smooth elementary solutions on (P •, P •), and is different
from zero for non-smooth ones.

7 Summary and Discussion

The main purpose of the present paper is to test whether, and in what way, physical fields
on the space-time of a cosmic string participate in the formation of the manifold structure

P ◦ and the d-structure P •, where P • represent the d-structure of the space-time of a cosmic
string with the singular boundary (see Sect. 1 and [7, 10]).

Mathematically, the test is based on verifying whether the elementary solutions of a scalar
field belong to P ◦ or, after prolongation to P •. In the case of an electromagnetic field, one
tests the smoothness of A◦

ε,β,l and A•
ε,β,l on (P ◦, P ◦) and (P •, P •), respectively.

Propositions 3.1 and 5.1.1 state that, indeed, the physical fields in the interior of the
cosmic string space-time P ◦ participate in the formation of the manifold structure P ◦ in
such a way that they can be reconstructed by means of the original space-time generators
{α◦

0, α
◦
1, . . . , α

◦
4} by using the operation of taking closure with respect to superposition with

smooth functions on R
n (see Appendix A). This is consistent with the interpretation men-

tioned in Sect. 1 or in [10].
A new situation appears when one takes into consideration the cosmic string space-time

with singularity. Such an object is not a manifold, but it is still a d-space (P •, P •). With
the exception of the cosmic string space-times with � = 2π(1 − 1/n), n = 1,2, . . . , scalar
and electromagnetic fields do not participate in the formation of the original d-structure P •
(Propositions 3.2 and 5.1.2).
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Thus, if one assumes that space-time of a cosmic string is a pseudoriemannian mani-
fold (P ◦, g) which, as the d-space (P ◦, P ◦), has the prolongation (P •, P •) (Sect. 2 and
Definition 4.2) then it can be a background of an asymptotically smooth scalar field or
of an asymptotically smooth electromagnetic field only for the following deficit angles
� = 2π(1 − 1/n), n = 1,2, . . . (Theorems 4.1 and 5.1).

However, it is also interesting to test what happens if the elementary solutions are as-
sumed to be smooth functions on the whole of P • even in the case � �= 2π(1 − 1/n),
n = 1,2, . . . . In the present paper the consequences of such an assumption were discussed
for the case of a scalar K-G field (Sect. 4). It turns out that the assumption of smoothness
of the scalar elementary solutions (normal modes) is satisfied when the d-structure on P • is

P̂ • instead of P •. P̂ • is the smallest d-structure (in the sense of inclusion) which contains
the scalar elementary solutions. The space-time with singularity P • and the d-structure P̂ •
forms a d-space (P •, P̂ •) which is not diffeomorphic to the original background d-space
with singularity (P •, P •). For example, (P •, P̂ •) differs from (P •, P •) by its embedding
properties. It cannot be embedded in R

5 like (P •, P •) (Corollary 4.2). It is worth emphasiz-
ing that both (P •, P̂ •) and (P •, P •) have the same topology and the same metric (1) defined
on P ◦ ⊂ P •.

One can wonder whether the asymptotic smoothness (smoothness at the singularity)
plays any role in the context of physical investigations. But, from the mathematical point of
view, the asymptotic smoothness requirement for physical fields is well motivated since the
smoothness is a key notion within the theory of d-spaces and the space-time with singularity
is a d-space. Smooth objects define a d-space’s properties. One can say that non-smooth
objects are “outside” the d-space’s theory. In a sense, “non-smoothness” is a symptom of
the theory inconsistency.

If one tries to model physical reality with the help a d-space then every physical field
has to be smooth. Therefore, the asymptotic non-smoothness of the considered physical
fields for � �= 2π(1 − 1/n), n = 1,2, . . . is a serious defect which is non removable with-
out modifications of the d-structure P •. Thus, the consistency assumption of the theory
of physical fields (scalar and electromagnetic) on the cosmic string space-time in the con-
text of the d-spaces theory leads to the following deficit angle “quantization” condition:
� = 2π(1 − 1/n), n = 1,2, . . . .

One can compare the above results with the conclusions obtained by Aliev and Gal’tsov
(Sect. 6 or [2]). The scalar and electromagnetic conical bremsstrahlung occurs only in
the case of asymptotically non smooth scalar and electromagnetic elementary solutions on
(P •, P •). In other words, the radiative scalar or electromagnetic A-B effects vanish un-
der the assumption of asymptotic smoothness of solutions. The disappearance of the conical
bremsstrahlung was treated by Aliev and Gal’tsov as a “quantization” condition analogously
to the well known effect for the quantum-mechanical A-B effect for a magnetic flux. The
asymptotic smoothness assumption plays a similar role.

Acknowledgements I thank Prof. Michael Heller and Prof. Krzysztof Ruebenbauer for their comments,
valuable discussion and suggestions.

Appendix A: Differential Spaces

The fundamental notions and theorems of the theory of differential spaces in the sense of
Sikorski can be found in a monograph by R. Sikorski [23] or in [8, 9, 11, 21, 22]. Here I
give the definitions and theorems necessary to follow the present paper. Informations about
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spaces more general than d-spaces in the sense of Sikorski can be found in [3, 4, 13, 14,
25–27].

Let C0 be a set of real functions on M .

Definition A.1 The set of functions

sc(C0) := {f = ω(ϕ1, ϕ2, . . . , ϕn): ϕ1, ϕ2, . . . , ϕn ∈ C0, ω ∈ C∞(Rn), n ∈ N}
is said to be the closure with respect to superposition with smooth functions from C∞(Rn)

for every n ∈ N.

A function f :M → R is local C0-function if for every p0 ∈ M there is a neighbourhood
U ∈ top(M) and ϕ ∈ C0 such that f |U = ϕ|U .

Definition A.2 The set of all local C0-functions on M denoted by (C0)M
is called the closure

with respect to localization.

Details can be found in [8, 23].

Definition A.3 The set C = Gen(C0) := (sc(C0))M
is said to be generated by C0. Then the

C0 is called the set of generators.

Theorem A.1 Let C0 be a set of real functions on M and C the set of functions generated
by C0; C := Gen(C0). Then

1) top(C) = top(C0),
2) C is a d-structure,
3) C0 ⊂ C ,
4) C is the smallest (in the sense of inclusion) d-structure containing C0.

Proof can be found in [9]. �

Definition A.4 If the set of generators C0 of a d-structure C is finite then the resulting d-
space (M, C) is said to be finitely generated.

Let (M, C) be a d-space. One can define the following equivalence relation

∀p,q ∈ M : p ρ
H
q ⇔ ∀α ∈ C : α(p) = α(q). (7)

If an equivalence class (with respect to ρ
H

) [p] �= {p} for p ∈ M , the topological space
(M, top(C)) is not Hausdorff.

Let πρ
H

and π̃∗
ρ
H

denote the following maps

πρ
H

:M → M/ρ
H
, πρ

H
(p) = [p],

π̃∗
ρ
H

: RM/ρ
H → R

M, π̃∗
ρ
H

(α) = α ◦ πρ
H

,

where α ∈ R
M/ρ

H .
The set C/ρ

H
:= π̃∗

ρ
H

−1
(C) of real functions on M/ρ

H
forms a d-structure C/ρ

H

on M/ρ
H

. The d-structure is said to be coinduced d-structure from C by the mapping π̃∗
ρ
H

[31].
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Thus, the quotient space M/ρ
H

can be equipped with the d-structure C/ρ
H

forming a
Hausdorff d-space (M/ρ

H
, C/ρ

H
). It is easy to see that

πρ
H

:M → M/ρ
H

is a smooth mapping between (M, C) and (M/ρ
H
, C/ρ

H
) and, in addition,

π∗
ρ
H

:= π̃∗
ρ
H

|C/ρ
H

, π∗
ρ
H

: C/ρ
H

→ C

is the isomorphism of algebras C/ρ
H

and C [18]. This result is very useful in the following
form

Corollary A.1 � is a smooth function on (M/ρ
H
, C/ρ

H
) iff �̃ := π∗

ρ
H

(�) is a smooth
function on (M, C).

Let (P̃ , P̃) be a finitely generated d-space with the d-structure P̃ generated by the
set of functions {α̃1, α̃2, . . . , α̃n }; P̃ = Gen{α̃1, α̃2, . . . , α̃n}, α̃k: P̃ → R,i = 1,2, . . . , n.
Then (P̃ /ρ

H
, P̃/ρ

H
) is also a finitely generated d-space with d-structure P̃/ρ

H
=

Gen(α1, α2, . . . , αn) where αi : P̃ /ρ
H

→ R, i = 1,2, . . . , n are given by the following for-
mula π∗

ρ
H

(αi) = α̃i . In other words αi([p]) := α̃i (p), p ∈ P̃ , [p] ∈ P̃ /ρ
H

.

Definition A.5 Let B be a set of real functions on M . A linear mapping V: C → B such that

V(αβ) = V(α)β + αV(β),

for any α,β ∈ C , is said to be a vector field on (M, C). A vector field is smooth if B ⊂ C .

The set of all smooth vector fields on a d-space (M, C) is a module over R and is denoted
by X(M).

Let πρ
H

:M → M/ρ
H

and π∗
ρ
H

: C/ρ
H

→ C be the mappings as above. Then the mapping

π#
ρ
H

: X(M) → X(M/ρ
H
),

π#
ρ
H

(V) := π∗
ρ
H

−1 ◦ V ◦ π∗
ρ
H

, V ∈ X(M)

is an isomorphism of modulae X(M) and X(M/ρ
H
) [19]. Let us formulate this result in

form useful in the present paper.

Corollary A.2 Ṽ is a smooth vector field on (M, C) iff V := π#
ρ
H

(Ṽ) is smooth on
(M/ρ

H
, C/ρ

H
).

Definition A.6 Let (M, C) be any d-space. A function β:M → R is said to be differentially
dependent on functions α1, α2, . . . , αn ∈ C at a point p ∈ M if there exist a neighbourhood
U ∈ top(C) of p and a function ω ∈ C∞(Rn) such that

β|U = ω(α1, α2, . . . , αn)|U .

Definition A.7 A set {α1, α2, . . . , αn}⊂ C is said to be differentially independent (d-in-
dependent) at a point p ∈ M if no function αi , for i ∈ {1,2, . . . , n}, depends differentially
on the remaining functions at p.
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Lemma A.1 Let (M, C) be a d-space with the d-structure C generated by the set of func-
tions {α1, α2, . . . , αn}. The set of functions {α1, α2, . . . , αn} is d-independent at p ∈ M iff
dimTpM = n.

Proof can be found in [16]. See also [8, 15]. �

Appendix B: Definitions and Formulae for the Cosmic String Space-Time

Let (P̃ ◦, P̃ ◦) be an auxiliary d-space, where P̃ ◦ := R× (0,∞)×〈0,2π〉×R is a “parameter
space”, P̃ ◦ := Gen(α̃◦

0, α̃◦
1, . . . , α̃◦

4) and functions α̃◦
i : P̃ ◦ → R, i = 0,1, . . . ,4 are given

by the following formulae

α̃◦
0(p̃) := t,

α̃◦
1(p̃) := ρ cosφ,

α̃◦
2(p̃) := ρ sinφ,

α̃◦
3(p̃) := z,

α̃◦
4(p̃) := ρ,

where p̃ ∈ P̃ ◦. (P̃ ◦, P̃ ◦) is not Hausdorff. The finitely generated d-space (P ◦, P ◦),
P ◦ = P̃ ◦/ρ

H
, P ◦ = P̃ ◦/ρ

H
:= Gen(α◦

0, α
◦
1, . . . , α

◦
4), α◦

i :P ◦ → R, α◦
i ([p]) := α̃◦

i (p), i =
0,1, . . . ,4 (see Appendix A), is a Hausdorff topological space and the following lemma
holds

Lemma B.1 The d-space (P ◦, P ◦) is diffeomorphic to (C◦ × R
2, (E5)C◦×R2), where E5 =

C∞(R5).

Proof can be found in [8]. �

A similar lemma is valid for the cosmic string space-time with singularity. Let (P̃ •, P̃ •)
be an auxiliary prolonged d-space, where P̃ • := R × 〈0,∞) × 〈0,2π〉 × R, P̃ • :=
Gen(α̃•

0, α̃•
1, . . . , α̃•

4) and α̃•
i : P̃ • → R are defined as follows

α̃•
i (p̃•) := lim

p̃→p̃•
α̃◦

i (p̃),

where p̃ ∈ P̃ ◦, p̃• ∈ P̃ • and i = 0,1, . . . ,4. (P̃ •, P̃ •) is also not Hausdorff.
Let P • = P̃ •/ρ

H
and P • = P̃ •/ρ

H
= Gen(α•

0, α
•
1, . . . , α

•
4), α

•
i ([p]) = α̃•

i , i = 0,1, . . . ,4.
The differential space (P •, P •) is a Hausdorff topological space.

Lemma B.2 The d-space (P •, P •) is diffeomorphic to (C• × R
2, (E5)C•×R2).

Proof can be found in [8]. �
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